organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Phenyl N-(1,3-thiazol-2-yl)carbamate

Jian-Guo Tang,^a Yong-Zhong Wu,^b Sheng Bi,^a Guo-Hua Zhang^a and Cheng Guo^a*

^aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ^bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 625 Dachang District Nanjing, Nanjing 210048, People's Republic of China Correspondence e-mail: guocheng@njut.edu.cn

Received 25 May 2009; accepted 27 May 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.160; data-to-parameter ratio = 13.8.

In the title compound, $C_{10}H_8N_2O_2S$, the planes of the aromatic rings are oriented at a dihedral angle of 66.69 (3)°. In the crystal structure, intermolecular N-H···N and C-H···O interactions link the molecules into a two-dimensional network, forming $R_2^2(8)$ ring motifs. π - π contacts between the thiazole rings [centroid-centroid distance = 3.535 (1) Å] may further stabilize the structure. A weak C-H··· π interaction is also found.

Related literature

For a related structure, see: Araujo *et al.* (2006). For bondlength data, see: Allen *et al.* (1987). For ring-motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{10}H_8N_2O_2S} \\ M_r = 220.24 \\ {\rm Monoclinic, } P2_1/c \\ a = 5.6430 \ (11) \ {\rm \AA} \\ b = 7.3910 \ (15) \ {\rm \AA} \end{array}$

c = 25.134 (5) Å $\beta = 91.21 (3)^{\circ}$ $V = 1048.0 (4) \text{ Å}^3$ Z = 4Mo K α radiation

μ	=	0.29	mm^{-1}
Т	=	294	K

Data collection

Enraf–Nonius CAD-4	1880 independent reflections
diffractometer	1346 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.027$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.918, \ T_{\max} = 0.972$	frequency: 120 min
2084 measured reflections	intensity decay: 1%
Refinement	

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.050 & 136 \text{ parameters} \\ wR(F^2) &= 0.160 & H\text{-atom parameters constrained} \\ S &= 1.00 & \Delta\rho_{\text{max}} &= 0.23 \text{ e } \text{\AA}^{-3} \\ 1880 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.28 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots N2^{i}$	0.86	2.01	2.864 (4)	171
$C3-H3A\cdots O2^{ii}$	0.93	2.46	3.335 (4)	156
$C5-H5A\cdots Cg2^{iii}$	0.93	2.98	3.736 (3)	139

Symmetry codes: (i) -x, -y + 2, -z; (ii) x - 1, y, z; (iii) x, y + 1, z. Cg2 is the centroid of the S/N2/C8–C10 ring.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* and *PLATON*.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2701).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Araujo, M., Eduarda, M. & Norberto, F. (2006). J. Chem. Res. 10, 664-667.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o1478 [doi:10.1107/S1600536809020236]

Phenyl N-(1,3-thiazol-2-yl)carbamate

J.-G. Tang, Y.-Z. Wu, S. Bi, G.-H. Zhang and C. Guo

Comment

Some derivatives of phenol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (C1-C6) and B (S/N2/C8-C10) are, of course, planar and they are oriented at a dihedral angle of 66.69 (3)°. Atoms O1, O2, N1, C4, C7, H1A, H9A and H10B are 0.118 (3), -0.063 (3), 0.028 (3), 0.172 (3), 0.023 (3), 0.051 (3), 0.002 (3) and -0.002 (3) Å away from the plane of ring B, respectively.

In the crystal structure, intermolecular N-H···N and C-H···O interactions (Table 1) link the molecules into a two-dimensional network forming $R_2^2(8)$ ring motifs (Bernstein *et al.*, 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The π - π contact between the thiazole rings, Cg2-Cg2ⁱ, [symmetry code: (i) 1 - x, -y, -z, where Cg2 is centroid of the ring B (S/N2/C8-C10)] may further stabilize the structure, with centroid-centroid distance of 3.535 (1) Å. There also exists a weak C—H··· π interaction (Table 1).

Experimental

For the preparation of the title compound, phenyl chloroformate (1.0 ml) was added slowly to a cold solution of thiazol-2amine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. Then, it was washed with water (20 ml), dried and concentrated to give the title compound (yield; 1.3 g) (Araujo et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Phenyl N-(1,3-thiazol-2-yl)carbamate

Crystal data	
$C_{10}H_8N_2O_2S$	$F_{000} = 456$
$M_r = 220.24$	$D_{\rm x} = 1.396 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
<i>a</i> = 5.6430 (11) Å	$\theta = 9 - 13^{\circ}$
<i>b</i> = 7.3910 (15) Å	$\mu = 0.29 \text{ mm}^{-1}$
c = 25.134(5) Å	T = 294 K
$\beta = 91.21 \ (3)^{\circ}$	Block, colorless
V = 1048.0 (4) Å ³	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.027$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.6^{\circ}$
T = 294 K	$h = 0 \rightarrow 6$
$\omega/2\theta$ scans	$k = 0 \rightarrow 8$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -30 \rightarrow 30$
$T_{\min} = 0.918, \ T_{\max} = 0.972$	3 standard reflections
2084 measured reflections	every 120 min
1880 independent reflections	intensity decay: 1%
1346 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site locati
Least-squares matrix: full	Hydrogen site location: inf sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constra
$wR(F^2) = 0.160$	$w = 1/[\sigma^2(F_o^2) + (0.07P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{max} < 0.001$
1880 reflections	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
136 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Prir methods

ion: difference Fourier map ferred from neighbouring

ained

 $P^2 + 1.2P$]

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z		Uiso*	$/U_{eq}$	
S	0.50888 (16)	0.91653 (1	4) 0.098	93 (4)	0.057	/8 (3)	
01	-0.0749 (4)	1.3216 (4)	0.106	91 (9)	0.058	34 (7)	
02	0.2490 (4)	1.1925 (4)	0.146	85 (10)	0.060	94 (7)	
N1	0.0988 (5)	1.0912 (4)	0.067	73 (11)	0.052	22 (8)	
H1A	-0.0156	1.1050	0.044	.9	0.063	*	
N2	0.2450 (5)	0.8574 (4)	0.016	38 (11)	0.053	5 (8)	
C1	-0.1494 (7)	1.7169 (6)	0.221	67 (16)	0.065	53 (11)	
H1B	-0.1690	1.8072	0.247	0	0.078	*	
C2	-0.3070 (7)	1.5775 (6)	0.218	20 (16)	0.070	00 (12)	
H2B	-0.4336	1.5728	0.241	3	0.084	*	
C3	-0.2801 (6)	1.4432 (5)	0.180	72 (15)	0.058	33 (10)	
H3A	-0.3880	1.3484	0.178	1	0.070)*	
C4	-0.0921 (6)	1.4522 (5)	0.147	55 (13)	0.047	76 (8)	
C5	0.0675 (7)	1.5907 (5)	0.150	58 (15)	0.059	02 (10)	
H5A	0.1945	1.5943	0.127	6	0.071	*	
C6	0.0395 (8)	1.7244 (6)	0.187	62 (16)	0.066	66 (11)	
H6A	0.1470	1.8196	0.189	9	0.080)*	
C7	0.1061 (6)	1.2010 (5)	0.110	72 (14)	0.049	94 (9)	
C8	0.2638 (6)	0.9587 (5)	0.058	34 (13)	0.044	6 (8)	
C9	0.4328 (7)	0.7386 (5)	0.015	06 (16)	0.061	7 (10)	
H9A	0.4494	0.6552	-0.01	23	0.074	*	
C10	0.5867 (7)	0.7498 (6)	0.054	73 (17)	0.065	51 (11)	
H10B	0.7206	0.6772	0.058	5	0.078	*	
Atomic displace	ement parameters	(\mathring{A}^2)					
	U^{11}	U^{22}	U^{33}	U^{12}		U^{13}	U^{23}
S	0.0439 (5)	0.0727 (7)	0.0563 (6)	-0.0038 (5)	-0.0113 (4)	0.0105 (5)
01	0.0530 (14)	0.0639 (17)	0.0574 (15)	0.0055 (13	3)	-0.0160 (12)	-0.0165 (13)
O2	0.0554 (15)	0.0714 (18)	0.0536 (15)	-0.0004 (13)	-0.0156 (12)	-0.0085 (13)
N1	0.0431 (15)	0.0635 (19)	0.0493 (16)	0.0000 (1:	5)	-0.0130 (13)	-0.0135 (15)
N2	0.0532 (17)	0.0526 (17)	0.0542 (17)	0.0043 (1	5)	-0.0076 (14)	-0.0044 (15)

supplementary materials

C1	0.066 (3)	0.072 (3)	0.058 (2)	0.010 (2)	-0.0082 (19)	-0.014 (2)
C2	0.053 (2)	0.094 (3)	0.063 (2)	0.003 (2)	0.0069 (19)	-0.007 (2)
C3	0.0443 (19)	0.067 (3)	0.064 (2)	-0.0096 (18)	-0.0019 (17)	-0.002 (2)
C4	0.0482 (19)	0.049 (2)	0.0453 (19)	-0.0013 (16)	-0.0090 (15)	-0.0020 (16)
C5	0.057 (2)	0.065 (3)	0.055 (2)	-0.011 (2)	0.0101 (17)	-0.0055 (19)
C6	0.072 (3)	0.062 (2)	0.066 (3)	-0.016 (2)	-0.003 (2)	-0.009 (2)
C7	0.0454 (19)	0.052 (2)	0.051 (2)	-0.0129 (17)	-0.0057 (16)	-0.0003 (17)
C8	0.0433 (18)	0.0499 (19)	0.0403 (18)	-0.0062 (16)	-0.0056 (14)	0.0051 (15)
C9	0.068 (2)	0.056 (2)	0.062 (2)	0.007 (2)	-0.0016 (19)	-0.0001 (19)
C10	0.054 (2)	0.061 (2)	0.080 (3)	0.0108 (19)	0.001 (2)	0.017 (2)

Geometric parameters (Å, °)

S-C10	1.722 (4)	C1—H1B	0.9300
S—C8	1.729 (3)	C2—C3	1.379 (5)
O1—C4	1.410 (4)	C2—H2B	0.9300
O1—C7	1.358 (4)	C3—C4	1.364 (5)
O2—C7	1.203 (4)	С3—НЗА	0.9300
N1—C7	1.351 (4)	C4—C5	1.365 (5)
N1—C8	1.375 (4)	C5—C6	1.369 (5)
N1—H1A	0.8600	C5—H5A	0.9300
N2—C8	1.296 (4)	С6—Н6А	0.9300
N2—C9	1.377 (5)	C9—C10	1.311 (6)
C1—C2	1.363 (6)	С9—Н9А	0.9300
C1—C6	1.382 (6)	C10—H10B	0.9300
C10—S—C8	87.71 (18)	C4—C5—C6	119.6 (4)
C7—O1—C4	117.5 (2)	C4—C5—H5A	120.2
C7—N1—C8	123.7 (3)	С6—С5—Н5А	120.2
C7—N1—H1A	118.1	C5—C6—C1	119.6 (4)
C8—N1—H1A	118.1	С5—С6—Н6А	120.2
C2—C1—C6	120.1 (4)	C1—C6—H6A	120.2
C2—C1—H1B	120.0	O2—C7—N1	125.5 (3)
C6-C1-H1B	120.0	O2—C7—O1	125.4 (3)
C8—N2—C9	109.8 (3)	N1C7O1	109.1 (3)
C1—C2—C3	120.4 (4)	N2—C8—N1	120.5 (3)
C1—C2—H2B	119.8	N2—C8—S	115.2 (3)
С3—С2—Н2В	119.8	N1—C8—S	124.3 (2)
C4—C3—C2	118.7 (4)	C10—C9—N2	116.0 (4)
С4—С3—Н3А	120.6	С10—С9—Н9А	122.0
С2—С3—НЗА	120.6	N2—C9—H9A	122.0
C3—C4—C5	121.5 (3)	C9—C10—S	111.2 (3)
C3—C4—O1	118.4 (3)	C9—C10—H10B	124.4
C5—C4—O1	119.9 (3)	S-C10-H10B	124.4
C6—C1—C2—C3	-0.2 (6)	C4—O1—C7—O2	2.5 (5)
C1—C2—C3—C4	0.5 (6)	C4—O1—C7—N1	-178.0 (3)
C2—C3—C4—C5	-0.3 (6)	C9—N2—C8—N1	178.6 (3)
C2—C3—C4—O1	-175.6 (3)	C9—N2—C8—S	-0.2 (4)
C7—O1—C4—C3	-112.5 (4)	C7—N1—C8—N2	179.5 (3)
C7—O1—C4—C5	72.1 (4)	C7—N1—C8—S	-1.8 (5)

supplementary materials

C3—C4—C5—C6	-0.1(6)	C10—S—C8—N2	0.1 (3)
O1—C4—C5—C6	175.2 (3)	C10—S—C8—N1	-178.6 (3)
C4—C5—C6—C1	0.3 (6)	C8—N2—C9—C10	0.2 (5)
C2-C1-C6-C5	-0.2 (6)	N2-C9-C10-S	-0.2 (5)
C8—N1—C7—O2	-3.3 (6)	C8—S—C10—C9	0.0 (3)
C8—N1—C7—O1	177.2 (3)		
Hydrogen-bond geometry (Å,	°)		

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
$N1$ — $H1A$ ··· $N2^{i}$	0.86	2.01	2.864 (4)	171
C3—H3A····O2 ⁱⁱ	0.93	2.46	3.335 (4)	156
C5—H5A…Cg2 ⁱⁱⁱ	0.93	2.98	3.736 (3)	139

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) *x*-1, *y*, *z*; (iii) *x*, *y*+1, *z*.

Fig. 1

